Timo Burster, PhD
1. Degrees and education
11/10 Teaching qualification: Venia legendi (Habilitation) in Experimental Medicine, University Medical Center Ulm, Germany
03/04 to 03/06 Postdoctoral Research Fellow, Stanford University School of Medicine, Stanford, CA, USA
01/01 to 12/03 Ph.D., Immunology, University of Tübingen, Germany
1997 to 2000 M.S. (Diplom) in Biology, University of Tübingen, Germany
1993 to 1997 B.S. (Vordiplom) in Biology, University of Freiburg, Germany
2. Research experience and previous employment
01/18 to present Associate Professor
Dept. Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
Immunology, Tumor Immunology
09/13 to 12/17 Laboratory Head
Principle Investigator, Dept. Neurosurgery, Ulm University Medical Centre, Ulm, Germany
Tumor Immunology
11/13 to 09/16 Visiting Professor
Humboldt Award, Poland/Germany, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
Immunology, Immunosenescence
10/12 to 06/13 Visiting Professor
Dept. Chemistry, University of Gdansk, Gdansk, Poland and Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland, stipend DAAD
Immunology
07/11 to present Extraordinary Member of the University Medical Center Ulm (Habilitation, Privatdozent), Ulm University, Ulm, Germany
Experimental Medicine
10/06 to 06/11 Team Leader
Dept. Internal Medicine I, University Medical Center Ulm, Ulm, Germany,
Autoimmunity
03/04 to 03/06 Postdoctoral Research Fellow, stipend DFG
Division of Pediatric Immunology and Transplantation Medicine, Stanford University School of Medicine, Stanford, CA, USA
Immunology, Biochemistry
01/01 to 12/03 Ph.D.
Medical and Natural Sciences Research Center (MNF), University of Tübingen, Tübingen, Germany
Immunology, Autoimmunity
05/00 to 12/00 M.S. (Diplom) in Biology
Medical and Natural Sciences Research Center (MNF), University of Tübingen, Tübingen, Germany
12/98 to 03/00 Scientific Assistant
Max-Planck-Institute for Developmental Biology (MPI), Tübingen, Germany
Axon guidance
3. Description of research activities
3.1. Immunosenescence
Aging is associated with a decreased functional immune response known as immunosenescence. Increased susceptibility to autoimmunity, neurodegeneration, infectious diseases, cardiovascular pathologies, and cancer is found in elderly persons resulting in higher mortality. Although aged-related immunity is declined, high levels of cytokines, increased inflammation, and imbalanced protease-activity are found in elderly persons, which on the downside can cause harm. A precise understanding of how proteases are involved in aging is needed to interfere with a reduced immune response. With this in mind, our specific protease inhibitors might have the potential as immunomodulators to restore an imbalance of protease activity in aged-related diseases. Furthermore, we are interested in applying immunomodulators, for instance natural food-derived peptides, which might be beneficial to reverse or at least delay immunosenescence. The expected results will also provide an insight in immune cell function by comparing immune cells from aged vs. non-aged donors. Indeed, we can learn general immune functions by evaluating an impaired immune system found in elderly compared to their younger counterparts.
3.2. Tumorigenesis
Cathepsins have a dual role in tumor cell development. In some circumstances, extracellular cathepsins can promote the development of tumors, in contrast to intracellular cathepsins, which are important in apoptosis, can prevent the survival of tumor cells. Cathepsin B and X are upregulated in distinct tumor cells. Moreover, cathepsins and matrix metalloproteinases (MMPs) promote tumor progression and metastasis. Therefore, the regulation and function of cathepsins during the process of tumor development and immune escape are determined in our laboratory. Thereby, we are focusing on antigen processing and presentation in the context of CD8+ T cell activation in a process known as cross presentation/priming. The resulting data allow the development of potent anti-tumor strategies, for instance, the use of specific cathepsin-inhibitors.
3.3. Proteolytic regulation of MHC molecules
HIV, for instance, inhibits maturation of major histocompatibility complex class II (MHC II), which is necessarily associated with the Ii processing and cell surface levels of MHC II molecules. Furthermore, the protease involved in proteolytic regulation of MHC I molecules needs to be investigated, particularly towards the process of recycling. We found that there serine protease cathepsin G is responsible for the proteolytic regulation of MHC I molecules, suggesting that there is a correlation between levels of MHC molecules and HIV-mediated protease regulation which is important for HIV-mediated immune evasion.
3.4. CatG and tumorigenesis
Neutrophils release serine proteases, including cathepsin G, proteinase 3, and elastase, at the side of inflammation, which have a broad range of functions: Proteolytic modification of chemokines and cytokines, clearance of internalized pathogens, proteolytic dependent and -independent antimicrobial activity, apoptosis, and tumor progression and metastasis. There are several examples how cathepsins influences the subsequent progression of tumorigenesis by proteolytic activation of pro-MMP9, which is pivotal in TGF-b signaling. TGF-b itself facilitates chemoattraction of tumor cells, accelerates tumor cell growth, and enhances angiogenesis. We are interested in the multiple function of cathepsin G, for instance, the frequency of several cancer types is significantly increased in T1D. It seems most likely that there is a correlation between high levels of proteases, which we detected in dendritic cells (DCs) of type 1 diabetes mellitus (T1D) patients, and the risk of several cancer types in T1D. Thus, our novel cell permeable serine protease inhibitors can be examined and might affect tumorigenesis.
4. Selected publications
Giese, Turiello, Eipper, Molenda, Palesch, Basilico, Benarafa, Marc-Eric Halatsch, Zimecki, Westhoff, Wirtz, and Burster. Exogenous cathepsin G-mediated upregulation of MHC class I molecules in immune and glioblastoma cells. Oncotarget. 2016. Nov. 15;7 (46).
Penczek, Sienczyk, Wirtz, and Burster. Cell surface cathepsin G activity differs between human natural killer subsets. Immunology Letters. 2016. Sep. 24, 80-84.
Mostafa, Pala, Hoegel, Hlavach, Dietrich, Westhoff, Nonnenmacher, Burster, Georgieff, Wirtz, and Schneider. Immune phenotypes predicts survival in patients with glioblastoma multiforme. Journal of Hematology and Oncology. 2016; Sep. 1; 9 (1):77.
Eipper S, Steiner R, Lesner A, Sienczyk M, Palesch D, Halatsch ME, Zaczynska E, Heim C, Hartman M, Zimecki M, Wirtz CR, and Burster T. Lactoferrin is an allosteric enhancer of the proteolytic activity of Cathepsin G. PLoS One. 2016; Mar 17;11.
Palesch D, Wagner J, Annika Meid, Molenda N, Sienczyk M, Muench J, Prokop L, Stevanovic S, Halatsch M, Wirtz CR, Zimecki M, Burster T. Cathepsin G-mediated proteolytic degradation of MHC class I molecules to facilitate immune detection of glioblastoma. Cancer Immunology, Immunotherapy. 2016; Mar 65: 283-291.
Kyeong-Ae K, Ständker L, Zirafi O, Chudziak D, Mohr K, Möpps K, Gierschik P, Vas V, Geiger H, Lamla M, Burster T, Richter R, Daubeu F, Frossard N, Hachet-Haas M, Galzi J, Hancke K, Sandi-Monroy N, Kraft B, Schittek B, Sulyok G, Boenig H, Canales-Mayordomo A, Jiménez-Barbero J, Giménez-Gallego G, Forssmann WG, Kirchhoff F, Münch J. Discovery and characterization of an endogenous CXCR4 antagonist. Cell Reports. 2015; 11 (5): 737-747.
Zou F, Schmon M, Sienczyk M, Grzywa R, Palesch D, Sun Z, Watts C, Schirmbeck R and Burster T. Application of a novel high sensitive activity-based probe for detection of cathepsin G. Anal Biochem. 2012; 421 (2): 667-672.
van Aalst D, Kalbacher H, Palesch P, Spyrantis A, Rosinger S, Boehm BO and Burster T. A proinsulin 73-90-derived protease-resistant altered peptide ligand increases TGF-b1 secretion in PBMC from patients with Type 1 diabetes mellitus. J Leukoc Biol. 2010; 87(5): 943-8.
Burster T, Marin-Esteban V, Boehm BO, Rötzschke O, Falk K, Weber E, Verhelst S, Kalbacher H, and Driessen C: Design of protease-resistant myelin basic protein-derived peptides by cleavage site directed amino acid substitutions. Biochem. Pharmacology. 2007; 74 (10): 1514-1523.
Burster T, Beck A, Tolosa E, Schnorrer P, Reich M, Krauss M, Kalbacher H, Häring HU, Weisert R, Weber E, Overkleeft H, and Driessen C: Differential processing of autoantigens in lysosomes from human monocyte-derived and peripheral blood dendritic cells. J. Immunol. 2005; 175 (9): 5940-9.
Burster T, Beck A, Tolosa E, Marin-Esteban V, Rötzschke O, Falk K, Lautwein A, Reich M, Brandenburg J, Schwarz G, Wiendl H, Melms A, Lehmann R, Stevanovic S, Kalbacher H, and Driessen C: Cathepsin G, and not the asparagine endoprotease AEP, controls the processing of myelin basic protein in lysosomes from human B lymphocytes. J. Immunol. 2004; 172 (9): 5495-503.
Reviews
Bischof, Westhoff, Wagner, Trentmann, Knippschild, Wirtz, and Burster. Cancer stem cells: Potential role of autophagy, proteolysis, and cathepsins in glioblastoma stem cells. Tumor Biology. 2017. March;39 (3).
Burster T. Processing and regulation mechanisms within the endocytic compartment of antigen presenting cells: possibility for therapeutic modulation. Current Pharmaceutical Design. 2013; 19 (6): 1029-42.
Burster T, Macmillan H, Hou T, Boehm BO and Mellins ED. Cathepsin G: roles in antigen presentation and byond. Mol Immunol. 2010; 47 (4): 658-665.
Busch R, Rinderknecht C, Roh S, Lee A, Harding JJ, Burster T, Hornell T, and Mellins ED: Achieving stability through editing and chaperoning: Cofactors of antigen presentation and their roles in the regulation of MHC class II peptide binding and expression. Immunol. Rev. 2005; 207: 242-60.
5. Member of the Editorial Board
Editorial Board of Archivum Immunologiae et Therapiae Experimentalis (AITE) for a 3-year term (2017-2019)
Activation of Cytotoxic Natural Killer Cells After Aneurysmal Subarachnoid HemorrhageSpitzer, D., Spitzer, N., Deininger, M., Wirtz, C., König, R., Burster, T., Kapapa, T.,
2017 In : World Neurosurgery. 101, p. 666-676.e1
Spliced analogues of trypsin inhibitor SFTI-1 and their application for tracing proteolysis and delivery of cargos inside the cellsFilipowicz, M., Ptaszyńska, N., Olkiewicz, K., Dębowski, D., Ćwikłowska, K., Burster, T., Pikuła, M., Krzystyniak, A., Łęgowska, A., Rolka, K.,
2017 In : Biopolymers. 108, 2,
Cancer stem cells: The potential role of autophagy, proteolysis, and cathepsins in glioblastoma stem cellsBischof, J., Westhoff, M., Wagner, J., Halatsch, M., Trentmann, S., Knippschild, U., Wirtz, C., Burster, T.,
2017 In : Tumor Biology. 39, 3, p. 1010428317692227
Development of the first internally-quenched fluorescent substrates of human cathepsin C: The application in the enzyme detection in biological samplesŁęgowska, M., Hamon, Y., Wojtysiak, A., Grzywa, R., Sieńczyk, M., Burster, T., Korkmaz, B., Lesner, A.,
2016 In : Archives of Biochemistry and Biophysics. 612, p. 91-102
Exogenous cathepsin G upregulates cell surface MHC class I molecules on immune and glioblastoma cellsGiese, M., Turiello, N., Molenda, N., Palesch, D., Meid, A., Schroeder, R., Basilico, P., Benarafa, C., Halatsch, M., Zimecki, M., Westhoff, M., Wirtz, C., Burster, T.,
2016 In : Oncotarget. 7, 46, p. 74602-74611
Cell surface cathepsin G activity differs between human natural killer cell subsetsPenczek, A., Sienczyk, M., Wirtz, C., Burster, T.,
2016 In : Immunology Letters. 179, p. 80-84
Immune phenotypes predict survival in patients with glioblastoma multiformeMostafa, H., Pala, A., Högel, J., Hlavac, M., Dietrich, E., Westhoff, M., Nonnenmacher, L., Burster, T., Georgieff, M., Wirtz, C., Schneider, E.,
2016 In : Journal of Hematology and Oncology. 9, 1, p. 77
Cathepsin G-mediated proteolytic degradation of MHC class I molecules to facilitate immune detection of human glioblastoma cellsPalesch, D., Wagner, J., Meid, A., Molenda, N., Sienczyk, M., Burkhardt, J., Münch, J., Prokop, L., Stevanovic, S., Westhoff, M., Halatsch, M., Wirtz, C., Zimecki, M., Burster, T.,
2016 In : Cancer Immunology and Immunotherapy. 65, 3, p. 283-91
Lactoferrin Is an Allosteric Enhancer of the Proteolytic Activity of Cathepsin GEipper, S., Steiner, R., Lesner, A., Sienczyk, M., Palesch, D., Halatsch, M., Zaczynska, E., Heim, C., Hartmann, M., Zimecki, M., Wirtz, C., Burster, T.,
2016 In : PLoS One. 11, 3, p. e0151509
Cell Death Induction in Cancer Therapy - Past, Present, and FutureNonnenmacher, L., Hasslacher, S., Zimmermann, J., Karpel-Massler, G., La Ferla-Brühl, K., Barry, S., Burster, T., Siegelin, M., Brühl, O., Halatsch, M., Debatin, K., Westhoff, M.,
2016 In : Critical Reviews in Oncogenesis. 21, 3-4, p. 253-267
Discovery and characterization of an endogenous CXCR4 antagonistZirafi, O., Kim, K., Ständker, L., Mohr, K., Sauter, D., Heigele, A., Kluge, S., Wiercinska, E., Chudziak, D., Richter, R., Moepps, B., Gierschik, P., Vas, V., Geiger, H., Lamla, M., Weil, T., Burster, T., Zgraja, A., Daubeuf, F., Frossard, N., Hachet-Haas, M., Heunisch, F., Reichetzeder, C., Galzi, J., Pérez-Castells, J., Canales-Mayordomo, A., Jiménez-Barbero, J., Giménez-Gallego, G., Schneider, M., Shorter, J., Telenti, A., Hocher, B., Forssmann, W., Bonig, H., Kirchhoff, F., Münch, J.,
2015 In : Cell Reports. 11, 5, p. 737-47
CK1δ in lymphoma: gene expression and mutation analyses and validation of CK1δ kinase activity for therapeutic applicationWinkler, B., Oltmer, F., Richter, J., Bischof, J., Xu, P., Burster, T., Leithäuser, F., Knippschild, U.,
2015 In : Frontiers in Cell and Developmental Biology. 3, p. 9
Ultrasensitive internally quenched substrates of human cathepsin LLęgowska, M., Wysocka, M., Burster, T., Pikuła, M., Rolka, K., Lesner, A.,
2014 In : Analytical Biochemistry. 466, p. 30-7
Synthesis of novel phosphonic-type activity-based probes for neutrophil serine proteases and their application in spleen lysates of different organismsGrzywa, R., Burchacka, E., Łęcka, M., Winiarski, Ł., Walczak, M., Łupicka-Słowik, A., Wysocka, M., Burster, T., Bobrek, K., Csencsits-Smith, K., Lesner, A., Sieńczyk, M.,
2014 In : ChemBioChem. 15, 17, p. 2605-12
Processing and regulation mechanisms within antigen presenting cells: a possibility for therapeutic modulationBurster, T.,
2013 In : Current Pharmaceutical Design. 19, 6, p. 1029-42
N- and C-terminal degradation of ecdysteroid receptor isoforms, when transiently expressed in mammalian CHO cells, is regulated by the proteasome and cysteine and threonine proteasesSchauer, S., Burster, T., Spindler-Barth, M.,
2012 In : Insect Molecular Biology. 21, 3, p. 383-94
Cathepsin S dominates autoantigen processing in human thymic dendritic cellsStoeckle, C., Quecke, P., Rückrich, T., Burster, T., Reich, M., Weber, E., Kalbacher, H., Driessen, C., Melms, A., Tolosa, E.,
2012 In : Journal of Autoimmunity. 38, 4, p. 332-43
Application of a novel highly sensitive activity-based probe for detection of cathepsin GZou, F., Schmon, M., Sienczyk, M., Grzywa, R., Palesch, D., Boehm, B., Sun, Z., Watts, C., Schirmbeck, R., Burster, T.,
2012 In : Analytical Biochemistry. 421, 2, p. 667-72
Was the serine protease cathepsin G discovered by S. G. Hedin in 1903 in bovine spleen?Palesch, D., Sieńczyk, M., Oleksyszyn, J., Reich, M., Wieczerzak, E., Boehm, B., Burster, T.,
2011 In : Acta Biochimica Polonica. 58, 1, p. 39-44
Regulation of cathepsin G reduces the activation of proinsulin-reactive T cells from type 1 diabetes patientsZou, F., Schäfer, N., Palesch, D., Brücken, R., Beck, A., Sienczyk, M., Kalbacher, H., Sun, Z., Boehm, B., Burster, T.,
2011 In : PLoS One. 6, 8, p. e22815
Invariant chain processing is independent of cathepsin variation between primary human B cells/dendritic cells and B-lymphoblastoid cellsReich, M., Zou, F., Sieńczyk, M., Oleksyszyn, J., Boehm, B., Burster, T.,
2011 In : Cellular Immunology. 269, 2, p. 96-103
Masking of a cathepsin G cleavage site in vivo contributes to the proteolytic resistance of major histocompatibility complex class II moleculesBurster, T., Macmillan, H., Hou, T., Schilling, J., Truong, P., Boehm, B., Zou, F., Lau, K., Strohman, M., Schaffert, S., Busch, R., Mellins, E.,
2010 In : Immunology. 130, 3, p. 436-46
Processing and presentation of (pro)-insulin in the MHC class II pathway: the generation of antigen-based immunomodulators in the context of type 1 diabetes mellitusBurster, T., Boehm, B.,
2010 In : Diabetes/Metabolism Research and Reviews. 26, 4, p. 227-38
A proinsulin 74-90-derived protease-resistant, altered peptide ligand increases TGF-beta 1 secretion in PBMC from patients with type 1 diabetes mellitusvan Aalst, D., Kalbacher, H., Palesch, D., Zou, F., Spyrantis, A., Rosinger, S., Boehm, B., Burster, T.,
2010 In : Journal of Leukocyte Biology. 87, 5, p. 943-8
Cathepsin A is expressed in primary human antigen-presenting cellsReich, M., Spindler, K., Burret, M., Kalbacher, H., Boehm, B., Burster, T.,
2010 In : Immunology Letters. 128, 2, p. 143-7
Cathepsin G: roles in antigen presentation and beyondBurster, T., Macmillan, H., Hou, T., Boehm, B., Mellins, E.,
2010 In : Molecular Immunology. 47, 4, p. 658-65
Application of specific cell permeable cathepsin G inhibitors resulted in reduced antigen processing in primary dendritic cellsReich, M., Lesner, A., Legowska, A., Sieńczyk, M., Oleksyszyn, J., Boehm, B., Burster, T.,
2009 In : Molecular Immunology. 46, 15, p. 2994-9
Protease-resistant human GAD-derived altered peptide ligands decrease TNF-alpha and IL-17 production in peripheral blood cells from patients with type 1 diabetes mellitusBoehm, B., Rosinger, S., Sauer, G., Manfras, B., Palesch, D., Schiekofer, S., Kalbacher, H., Burster, T.,
2009 In : Molecular Immunology. 46, 13, p. 2576-84
Specific cathepsin B inhibitor is cell-permeable and activates presentation of TTC in primary human dendritic cellsReich, M., Wieczerzak, E., Jankowska, E., Palesch, D., Boehm, B., Burster, T.,
2009 In : Immunology Letters. 123, 2, p. 155-9
Cathepsin G is differentially expressed in primary human antigen-presenting cellsStoeckle, C., Sommandas, V., Adamopoulou, E., Belisle, K., Schiekofer, S., Melms, A., Weber, E., Driessen, C., Boehm, B., Tolosa, E., Burster, T.,
2009 In : Cellular Immunology. 255, 1-2, p. 41-5
Cathepsin E regulates the presentation of tetanus toxin C-fragment in PMA activated primary human B cellsBurster, T., Reich, M., Zaidi, N., Voelter, W., Boehm, B., Kalbacher, H.,
2008 In : Biochemical and Biophysical Research Communications. 377, 4, p. 1299-303
Angiogenic-regulatory network revealed by molecular profiling heart tissue following Akt1 induction in endothelial cellsSchiekofer, S., Belisle, K., Galasso, G., Schneider, J., Boehm, B., Burster, T., Schmitz, G., Walsh, K.,
2008 In : Angiogenesis. 11, 3, p. 289-99
A novel cell penetrating aspartic protease inhibitor blocks processing and presentation of tetanus toxoid more efficiently than pepstatin AZaidi, N., Burster, T., Sommandas, V., Herrmann, T., Boehm, B., Driessen, C., Voelter, W., Kalbacher, H.,
2007 In : Biochemical and Biophysical Research Communications. 364, 2, p. 243-9
Design of protease-resistant myelin basic protein-derived peptides by cleavage site directed amino acid substitutionsBurster, T., Marin-Esteban, V., Boehm, B., Dunn, S., Rotzschke, O., Falk, K., Weber, E., Verhelst, S., Kalbacher, H., Driessen, C.,
2007 In : Biochemical Pharmacology. 74, 10, p. 1514-23
Interferon-gamma regulates cathepsin G activity in microglia-derived lysosomes and controls the proteolytic processing of myelin basic protein in vitroBurster, T., Beck, A., Poeschel, S., Øren, A., Baechle, D., Reich, M., Roetzschke, O., Falk, K., Boehm, B., Youssef, S., Kalbacher, H., Overkleeft, H., Tolosa, E., Driessen, C.,
2007 In : Immunology. 121, 1, p. 82-93
Influenza A virus elevates active cathepsin B in primary murine DCBurster, T., Giffon, T., Dahl, M., Björck, P., Bogyo, M., Weber, E., Mahmood, K., Lewis, D., Mellins, E.,
2007 In : International Immunology. 19, 5, p. 645-55
Human cytomegalovirus alters localization of MHC class II and dendrite morphology in mature Langerhans cellsLee, A., Hertel, L., Louie, R., Burster, T., Lacaille, V., Pashine, A., Abate, D., Mocarski, E., Mellins, E.,
2006 In : Journal of Immunology. 177, 6, p. 3960-71
Human dendritic cell expression of HLA-DO is subset specific and regulated by maturationHornell, T., Burster, T., Jahnsen, F., Pashine, A., Ochoa, M., Harding, J., Macaubas, C., Lee, A., Modlin, R., Mellins, E.,
2006 In : Journal of Immunology. 176, 6, p. 3536-47
Differential processing of autoantigens in lysosomes from human monocyte-derived and peripheral blood dendritic cellsBurster, T., Beck, A., Tolosa, E., Schnorrer, P., Weissert, R., Reich, M., Kraus, M., Kalbacher, H., Häring, H., Weber, E., Overkleeft, H., Driessen, C.,
2005 In : Journal of Immunology. 175, 9, p. 5940-9
Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expressionBusch, R., Rinderknecht, C., Roh, S., Lee, A., Harding, J., Burster, T., Hornell, T., Mellins, E.,
2005 In : Immunological Reviews. 207, p. 242-60
Biotinylated fluorescent peptide substrates for the sensitive and specific determination of cathepsin D activityBaechle, D., Cansier, A., Fischer, R., Brandenburg, J., Burster, T., Driessen, C., Kalbacher, H.,
2005 In : Journal of Peptide Science. 11, 3, p. 166-74
Cathepsin G, and not the asparagine-specific endoprotease, controls the processing of myelin basic protein in lysosomes from human B lymphocytesBurster, T., Beck, A., Tolosa, E., Marin-Esteban, V., Rötzschke, O., Falk, K., Lautwein, A., Reich, M., Brandenburg, J., Schwarz, G., Wiendl, H., Melms, A., Lehmann, R., Stevanovic, S., Kalbacher, H., Driessen, C.,
2004 In : Journal of Immunology. 172, 9, p. 5495-503
Human B lymphoblastoid cells contain distinct patterns of cathepsin activity in endocytic compartments and regulate MHC class II transport in a cathepsin S-independent mannerLautwein, A., Kraus, M., Reich, M., Burster, T., Brandenburg, J., Overkleeft, H., Schwarz, G., Kammer, W., Weber, E., Kalbacher, H., Nordheim, A., Driessen, C.,
2004 In : Journal of Leukocyte Biology. 75, 5, p. 844-55
Inflammatory stimuli recruit cathepsin activity to late endosomal compartments in human dendritic cellsLautwein, A., Burster, T., Lennon-Duménil, A., Overkleeft, H., Weber, E., Kalbacher, H., Driessen, C.,
2002 In : European Journal of Immunology. 32, 12, p. 3348-57
Characterization of legumainSchwarz, G., Brandenburg, J., Reich, M., Burster, T., Driessen, C., Kalbacher, H.,
2002 In : Biological Chemistry. 383, 11, p. 1813-6
Cathepsin S activity is detectable in human keratinocytes and is selectively upregulated upon stimulation with interferon-gammaSchwarz, G., Boehncke, W., Braun, M., Schröter, C., Burster, T., Flad, T., Dressel, D., Weber, E., Schmid, H., Kalbacher, H.,
2002 In : Journal of Investigative Dermatology. 119, 1, p. 44-9